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Two-player differential games are considered under the assumption that one of the play- 
ers receives information on the phase coordinates of his opponent with a certain time lag. 
In practical cases information lag is due to the time required for the reception and treat- 
ment of measured data. The presence of information lag distinguishes the problems con- 
sidered here from ordinary problems of the theory of differential games fe. g. see G-33). 
We show (see also [43) that under certain general conditions every differential game with 
information lag is equivalent to a certain differential game with zero lag. This makes 
possible the use of familiar methods of differential game theory for solving game prob- 
lems with information lag. Some specific pursuit problems in which one of the players 
receives information with lag are considered. The problems are solved and analyzed and 
the conditions under which capture (target locking) can occur are determined. 

1. Formulrtfon of the problsm, Let us consider a differential game involv- 
ing two controlled systems called the “players” (or “sides”) P and E. We denote the 
phase coordinate vectors of these systems by z = (x1 ,..., z,) and g = (yl, . . . . yJ and 
the controlling function vectors by u = (or, . .., u,) and u = (us, ..*, V&) I r-q=- 
tively. The dimensions n, s, m, k of these vectors are arbitrary. 

The equations of system motion are of the form 

dz / dt = f (2, % t), dy/dt= g (Yl u, t) (I.11 

Here t is the time ; f = (fl, . . . . f,) and g = (gl, . . . . g,) are given vector func- 
tions. We assume that the initial instant &, of the game is given and that the instant T 
at which the game ends is defined by a condition of the form 

h (z (Q, Y (T), T) = 0 U-2) 

Here h is a given scalar function and 2” is the smallest root of Eq. (1.2) for which 
T > t,. Without limiting generality we can assume that h > 0 for t ( T; other- 
wise we simply multiply the function h by -1. Specifically, if the instant of termination 
of the game ( Fe) is given, then h. = To - t. 

The controlling functions are subject to the restrictions 

u 01 E u, p(t) E Ir 0 > to) (1.3) 
Here CT, v are closed sets in m- and f-dimensional spaces, respectively. The func- 

tion (payoff) is given in the form 

F = F @ (Q, Y (0, T) (1.41 

where F (z, 2, t) is a known scalar function. We assume (without limiting generality) 
that player P strives to minimize and player E to maximize the functional F. III par- 
ticular, if the payoff is the game duration (in pursuit problems), then F = t or F =- t , 
depending on whether P is the pursuing or the evading player. The conditions and restric- 
tions which we have inrroduced are standard in the theory of differential gamts, 

Let US alsO make the following assumption con~ming the information made available 
to the players. At each instant t player P is informed of the instantaneous value of the 
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phase vector of player E at the instant f - z, i.e. the vector y (t - T) Here the con- 
Stan-0 tapSHI@ tile time l&g tit& which piayer P reoefves hia adoration and is 
eWal to the tfme needed by this player to receive and treat the measured data. rt is 
natural to assume that the lag is ruffkfently small (smaller than the duration of the pro- 

cess), f. e. that ‘k < T - t,. In addition, playu.P knows the functions f, g, h, F 
and the seti u9 v in relations (l.l)-(1.4) (Le. the rules and puqow of the game) prior 
to the start of the game. We shall solve the problem from the standpoint of phyer p, 
i.e. we shall seek the optimal control u for player P as a function of the time t in the 
interval It,, 2’1 and of the ~~0~ meadtired data,namely the vectors x (2) arid 

El 6 - 7). We need make no ~~p~~ as to the information made available to ,?Z ; 
we shall merely suppnae that E behaves in the worst potafble way from the standpoint of 
p.. Tm will yield the minimum guaranteed value of the functional F. 

By the initial instant t, we mean the instant when the first information is received ; 
we specify the initial conditions in the form 

t (to) = z”, Y @* - r) = Y” (i.5) 

The contr&led motion of player P begins at the instant t, ; for t ( t, Le. prior to 
the influx of in&rmaUon, the control for player P must be chosen on the basis of some 
prior considerations (the motion for t < te can be considered utmnntrolled), 

9. Eqoiorhnor of #am@@ with rod without informrtton lr$, wo: 
inttoduce the symbolism q (t) = y (t - r) and rewrite Eqs. (1.1) and initial conditions 
(I. 5) as 

tiz / dt = f (aA n, t), dr\/dt= g (rl, n, t - r> (2.1) 

5 (taf *= 20: 7t fro> = Y@ 

Let us denote by D (& t) the attamability domain for player E in the time r under 
the fnitial condition y (b) I y. in other words, D (y, t) is the set of vectors y (E -f-r) 
obtainable under the condition y (t) = y and for ail possible permissibte controku~ V 
in the interval [t, t -j- ‘r1 if the functions y, u are related by the second equaUon of 
(1.1). Let us write out the conditions of game termination and the expression for the 
guaranteed value of the minimized functional F using the spbofs introduced above. 
We shall limit our attmtion to three important particuliu cases. 

1.. Let the game duration be fixed and equal to!@,; the function h in (X.2) is then 
equal to la = T, - t. The guaranteed value of the fun&ional F for given z (T,), 
q (TO) can then he determfned (for the most adverse circumSancCs) by maximizing the 
function F appearing in (1.4) with respect to the permissible values of Y (T&. We 
obtain 

F o = F, (z (T,), r( (TO), TO) = (2.2) 

= maxy F (2 (T,), y, To), Y e in h tT& T~I - 4 
2.. Now bt the function k be arbitrary (with the proviso that /& > 0 for f < Tf 

and let the function F appearing in (1.4) be equai to F = t. This occurs in a pursuit 
game in which P is the pursuer. The most advone game duration from the standpoint 
of P can then ba determiued f&m the condition 

ho (5 (& rl (0, t) =maxyh(s(t), y, t)=O 

Y E D (rl 01, t - ~1 (2.3) 

3’. tet the fuuctim h.be arbitrary as above, and let F = - t, i. e. let P be the 
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evading player. Then instead of (2.3) We have 

h, (z 01, ? (% t) = min, h fs (t), y, t) = 0 

y E D (rl (0, t - 4 (2.9 
In all the above cases the condition of game termination and the guaranteed Value 

of the functional are of the form 

Fs = F, (s: (99 rl (T), T) (2.5) 

Here the function hsis defined by the equations hs =c T, - t, (2.3), and (2.4). and 
the function F. by Eqs. (2.2), F, = t and F, = - t , respectively. in the thee c-es 

considered above. In [4] it is shown that relations (2.5) are alsO valid in more gene- 
ral cases ; the expressions for the functions he, F, appropriate to these cases are given. 

Differential equations and initial conditions (2.1). restrictions (1.3). the condition of 
process termination, and functional (2.5) clearly define a differential game without 
information lag. In fact, at each instant f the phase coordinates t (t), q (t) of both 
sides are known to player P . We have thus proved that in order to obtain the guaranteed 
result in the game with information lag defined by (1. l)-(1.5) we need merely solve 
differential game (2 1). (I. 3), (2.5) without information lag. 

Since a differential game with information lag is equivalent to a differential game 
without lag, games with lag are amenable to all the known approaches and results of the 
theory of differential games without lag (e, g. see [ 1-31). For example, we can construct 
the Bellmun-Isaacs equation for game (2. l), (1. 3), (2. S), construct its characteristics, 
and investigate its solution as is done in [1& First of all we must calculate the functions 
ha, Fs appearing in (2.5) using formulas (2.2)-(2.4). We note that if the equations of 
motion of system E are autonomous, i.e. if the function g is independent of t, then 
equations of motion (2.1) coincide with (1.1). 

Pursuit games can be solved by the procedure of [3;, which entails determination of 
the instant of initial absorption. Section 3 of the present paper contains solutions of 
specific examples on the basis of a self-evident modification of this procedure for games 
with info~ati~ lag. 

N o t e 2. 1. Having solved differential game (2.1). (1.3). (2.5) without information 
lag, we can determine the synthesizing controls u = ~(2, q, t) and u G I@, TV, t) for 
both players. The function u (2, TV, t) synthesizes the guaranteeing control for player P 
for the initial problem by way of the instantaneous measurements of z(t) and q(t) = 
= vft- 7). The function v(z, q, t) represents the control for player E which is least 
favorable to player P; however, player E cannot use this function, as it defines the con- 
trol Y at the instant t--r in terms of a future value of the phase vector s(t). To deter- 
mine the optimal control for player E we must specify the character of information 
supply to player E and solve the problem again for player E. 

Note 2.2. The above fact of equivalence of games with information lag to games 
without lag is valid for a broader class of problems than (1. l)-(I. 5). Par example, it 
holds for games with integral restrictions on the controls as well as for games with rest&c- 
ted phase coordinates. All that matters .is that the phase coordinates and controlling func- 
tions of one player not appear in the equations of motion and restrictions of the opposite 
player. 
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8, IbXhmpl*# Of pUtIUlt g4ltilr With inforfflrtlon lrg, Let the motion 
of two objects (pursuer and evader) be described bythe systems of differential equations 
with resuictfons 

r1* = Wl, Wl l = al, 14 01 (3.1) 
r,* = w,, w2- = its, I a, I 4 a%, at > 0% 

Here rl, rs are the radius vectors of the objects, wr, ws are their velocities, and 
a,, a~ are their accekrations which are the controllfng funcrlons restricted in absolute 
value by the constants a,, a~. The subscript 1 refers to the pursuer, the subscript 2 to the 
evader. All of the vectors in (3.1) are of the arbitrary and equal dimension N. The 
game is assumed to terminate when the distance between the objects becomes equal to 
the given number 2 (t e, when capture occurs) ; game terminatim coDdWot% (1.2) then 

becomes ~~r~(~~, rs(Tf, ~==~rlfT)-r~((T)~-13.0 (3.2) 
The pay&f is defined as the time elapsed fkom the initial instant of the game u&l 

the iRnant of capture ; tht! pursuer S3i~es to reduce this time and the e~ada t-o incte;llie 

it (F e T in formula (1.4)). We assume that at each instant t > 0 the pursuer knows 
his phase coordinates rr, wr at this instant and the evader’s phase coordinates rs, Ws at 
the instant t - 7. 

We solved this problem accord@ to the above scheme. We began by computing the 
funCti0i1 &and then investigated the resu&ing game without information lag by the pro- 
cedure of Bf. 

We constmcted and integrated the equations of the characteristics, constructed the 
opt&ma1 O&jecQxies and contr~b. and determined the barrier sutfaix in the phase coor- 
dinate space. The entire analysis was carried out as in the case of the ‘%orropk mis- 
siles” problem in 01. 

Let us describe the solution of the problem by the procedure of p], which is much 
more brief by virtue of the simplicity of the attainability domains. We assume that at 
the initial instant t L= 0 the pursuer hnows his own phase coordfmrtes rlo, wxe and the 
phase cCN&#tes r,do, ws’of the evader at the instant t - --z. The a~~i~~ 
domains of the pursuer and the evadet at the instant t in the radius vector space are 
sphws with their cenws at the points 

r1O + Wl% r2O + we0 (t + z) 
and with the radii 

a# / 2, aa (t + zp / 2 

rcspctivcly, Let us construct the equation which defines the instant of initial absorption 
of the a~~i~~ domain of the evader by the ~-nei~~ .of the pursuer’s attain- 
ability domain. We denote the vector cmcthg the cent@8 of the attainability 
domains byR(t) and the difference between their radii (with aflowance for the I- 
naighborhood by Q (t) We clearly have 

R (t) 3: roe + wao (t + z) - rlo - wlbt (3.3) 
Q VI= I f a# / 2 - a, (t + z)? / 2 

The instant of absorption 2’ is defined as the fix% positive root of the equation 

ffZPH=Q(T) (34 
‘rhe pursuer’s equarion which ensures capture at the instant T must effect aiming at 

that point of its attainability domain which lies at the distance i from the point of 
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tangency of the evader’s attainability domain and the l-neighborhood of the pursuer’s 
attainability domain. Hence, the pursuer’s control must be taken in the form 

a1 = a,R (T) / 

where T is the first positive root of Eq. (3.4). 
the evader can avoid capture until the instant 
tangency, i. e. by employing the control 

as = a& (T) 

I R (T) I (3.5) 

If the pursuer keeps to control (3.5). then 
T by aiming towards the same point of 

W (J”) I (3.6) 
Let us assume that 

Q (0) = 1 - a29 I 2 > 0 (3.7) 
This inequaliq is the necessary condition for the possibility of game termination (if 

this condition is violated, the evader can always escape from the capture zone of radius 
I within the lag time r ). In addition, we assume that 1 R (0) 1 > Q (0)) i.e. capture 
has not occurred in the initial position. Formulas (3.3) imply that for sufficiently large 
t and for a, > us we have 1 R (t) 1 < Q (t). This implies that Eq. (3.4) has an 
odd number of positive roots. Since this equation is reducible with the aid of Eqs. (3.3) 
to a fourth-degree algebraic equation in T, it follows that it has either one or three posi- 
tive roots. 

let Q (t) > 0 for all positive t . Since the radius of the L-neighborhood of the pur- 
suer’s attainability domain is always larger than the radius of the evader’s attainability 
domain, and these domains can touch at one point only. In this c&e p. !I] the first posi- 
tive root T of Eq. (3.4) is the guaranteed time of game termination, and capture can be 
effected in a finite time under all boundary conditions. 

Now let the function Q (t) vanish and let t, be iu first positive root. If the first posi- 
tive root T of Eq. (3.4) satisfies the condition T < tl, then the attainability domains 
can touch at one point only, as above, and 3’ is again the guaranteed time of termination 
of the game. But for T > I!, there exist instants t’( T such that the radius of the 
evader’s attainability domain can be larger than or equal to the radius of the Z-neighbor- 
hood of the pursuer’s attainability domain. In this case it is generally impossible to 
guarantee capture in the time T under initial data such that T > t,. 

Controlling his motion in accordance with rules (3.4) and (3.5). by the instant T the 
pursuer ensures a position in which the attainability domain of the pursuer lies entirely 
in the l-nighborhood of the pursuer’s location within the time z. 

This situation satisfies the condition of guaranteed capture for games with information 
lag (see (2.3)). 

Solving the problem by the procedure set out in p]. we arrive at the same Eqs. (3.4). 
(3.5) for the time T and for the pursuer’s optimal equation. 

The quantity T and controls (3.5). (3.6) remain constant along each optimal trajec- 
tory, so that the optimal trajectories are parabolas. Formulas (3.3)-(3.5) define the 
synthesis of the pursuer’s optimal control if by rt’, rs”, \vrO, ws” are’taken to signify 
the instantaneous measured data. The time T as a function of the initial phase ooordi- 
nates has a discontinuity at those points where there is a jump discontinuity in the first 
root of Eq. (3.4). This corresponds to the merging of the first two positive roots of Eq, 
(3.4), i.e. to the existence of a multiple root of Eq. (3.4). The multiple-root condition 
is of the form 

(3.8) 
Eliminating T from Eqs. (3.4), (3.8). we obtain the equation of the surface (called the 
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“bar&z” lJ.1) in the phase coordinate space at which T experiences a discontinuity. 
The jump which T expwlmca at this surface is due to the pursuer’s need to execute a 
turn maneuver Cl]. 

It is possible to prove that the above condition Q it) > 0 is equivalent to the con- 
dition of n~~~euati~ of the barrier [I]. However, if the function 0 (t) vanishes for 
r > 0, the two branches constituting the barrfer surface intersect and isolate the domain 

in the phase space where T < t, and where the game terminates in a finite time. Out- 
side this domain the evader can escape capture (see [l] for a discussion of these matters 
in the case of the “isotropic missiles” game). 

Thus,capture in a finite time T for all initial conditions is guaranteed if Q (t) > 0 
for all t 2 0. Recalling relations (3.3). (3,7), we cab write the condition of positive 
definiteness of the function Q ($1 in the form 

@l - 4) U - rslrs I 2) > 4rs I 2 

From this we obtain the condition of guaranteed capture in its final form, 

(a1 - 4)4.2~” > ihjw’ / 2 NJ) 

We note that the inequalities or > a, and (3.7) follow from (3.9). Condition (3.9) 
showsthatthe larger the delay time 7, the greater the advantage in acceleration required 
by the pursuer in order to achieve capture. 

Let us consider some further examples of games with i~f~rnati~ lag which can be 
solved by the above method. 

In all of these examples the payoff is the pursuit time, the game termination condition 

retains its previous form (3.2). the subscript 1 nfen to the pursuer and the subscript 2 to 
the evader. We solve the problems from the point of view of the pursner, who receives 
information on the phase coordinates of the evader after a time lag equal to z. In all 
of our examples we denote the players’ vector functions by nl, 4 asbefore (but using 
them to signify either velocity or acceleration, as the case may be). The instant of 
absorption T is. as Btfott, the first pos@ive root of Ee (3.41, and the players’ optimal 
controls are defined by formulas (3.5). (3.6). However, the functions R ( T), Q ( T) in 
relations (3.4)-(3.6) are of different form than in (3.3). We shall write out these func- 
tions for our specific examples. 

A, Let both players be subject to velocity control and let their equations of mOtiOn 
and restrictions be of the form 

*1 * = a,, .- r, - +, 14 Gals 14 Id% 

Here, as everywhere, it, and 4 are constants, In this case the fictions a (T), Q (T) 
ae@venbY R(T)=rs”-rr”, Q(T)=Zfa,T-as(T+z) 

capture is guaranteed for all initial situations, provided that the two conditions 
a, > a, and 1 > 4z are both fulfilled. 

3, Let the pursuer be subject to acceleration control and the evader to Velocity 

conaoL Theequations of motionare 
*- rr - wl, *- wt. - a,, r,f = as, i%K% I&rl+% 

Here the functions R, Q are given by 
R (T) = 4” - ~10 - w:T, Q (T) = E + a,Ta / 2 - a, (T i- z) 

Capture is guaranteed for all initial conditions if 
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1 > a22a1-1 / 2 + %T 
We note that for z = 0 this solution becomes the solution 

problem [ 1). 
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of the “isotropic missiles” 

C. If the pursuer is subject to velocity control and the evader to acceleration 
control, the equations of motion and the functions R, Q are of the form 

* . 
rl =al, r, =w,, *- w, -aa,, I 81 I < aI? I at I S a, 

R (0 = r,” + Wt” (T + z) - rlo, Q (T) = I+ alT - a, (2’ + z)” 12 
In this case situations such that the evader can escape capture exist for all problem 

parameters. 
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The necessary and sufficient condition under which the Bellman function for the time- 
optimal process problem belongs to the class of functions satisfying the Lipschitz con- 
dition is developed. 

1, Let a controlled process be described by the system of equations 

dz / cl?? = f (z, u) (1.1) 

where z and f are n-dimensional vectors and u is an r-dimensional control vector. 
Let us suppose that the set U of permissible values of the controlling functions tl = 

= u (t) is a nonempty compact subset of the r-dimensional Euclidean space E,. As 
our permissible controlling functions we consider the measurable functions u = u (t) 
with values in U. In addition, we assume that the vector function f (5, u) is defined 
and continuous in both its variables on the set &, X U and that it satisfies Lipschitz’ 
local condition in z with a constant independent of u. The purpose of control is to bring 
the system to the position 5 = 0. 

LetG(<?‘)b h e t e set of all points z. E E,., from which it is possible to reach 
the origin in a time smaller than T. In other words, z. E G (< T) means that there 
exists a permissible control u = u (t) defined for t E IO, ~1, z < T such that the 


